High isostatic pressure (HIP) and high-pressure homogenization (HPH) are considered important physical technologies that able to induce changes on enzymes. HIP and HPH are emerging food processing technologies that involve the use of ultra high pressures (up to 1200 MPa for HIP and up to 400 MPa for HPH), where the first process is based on the principle that the maintenance of a product inside vessels at high pressures induces changes in the molecules conformation and, consequently, in the functionality of polysaccharides, proteins and enzymes. To the contrary, for HPH process, the high shear and sudden pressure drop are the responsible phenomena for the changes on the processed product. This chapter aims to evaluate comparatively the effects of HIP and HPH on the activity of enzymes currently applied in food industry and to identify the main structural changes induced by each process. The overall evaluation of the results shows that mild conditions of both processes were recently highlighted as able to improve the activity and the stability of several enzymes, whereas extreme process conditions (pressure, time and temperature) induce enzyme denaturation with consequent reduction of biological activity. Considering the complexity and diversity involved in the enzyme structure and its ability to react, it is not possible to determine specific conditions that each process is able to promote increase or reduction of enzyme activity, being necessary to evaluate HIP and HPH for each enzyme. Finally, in terms of molecular structure, the effect of HIP and HPH on enzymes can be explained by the alterations in the quaternary, tertiary and secondary structures of enzymes, which directly affects its active site configuration.In terms of molecular structure, the effect of HIP and HPH on enzymes can be explained by the alterations in the quaternary, tertiary and secondary of enzymes, which directly affects the enzymes active site configuration, inducing exposure of hydrophobic amino acids, exposure of SH groups due to unfolding of the protein, a reduction in the total SH content due to new disulfide bonds formation and changes in the α-helix, β-sheet and β-turn ratio composition due to alterations of the secondary structure [4-6, 10, 11]. However, the occurrence of these phenomena-sequence of occurrence, intensity and required pressure-might be different for HIP and HPH.The impact of each process on enzymes was evaluated by few published revisions [4,6,12], however, no one dedicated to compare the effect of HIP and HPH on the main enzymes used Enzyme Inhibitors and Activators 50 Effect of High-Pressure Technologies on Enzymes Applied in Food Processing http://dx.doi.org/10.5772/66629 51 Effect of High-Pressure Technologies on Enzymes Applied in Food Processing http://dx.doi.org/10.5772/66629 53 Enzyme Inhibitors and Activators 66 Enzyme Inhibitors and Activators 70