Larvae of the sawfly Athalia rosae ruficornis Jakovlev (Hymenoptera: Tenthredinidae) feed on several glucosinolate-containing plants and have been shown to sequester the main glucosinolates of different hosts, namely sinalbin (p-hydroxybenzylglucosinolate) from Sinapis alba L., sinigrin (allylglucosinolate) from Brassica nigra (L.) Koch, and glucobarbarin ((S)-2-hydroxy-2-phenylethylglucosinolate) from Barbarea stricta Andrz. (Brassicaceae). These plant metabolites are stored in the haemolymph, which is readily released when larvae are attacked by predators. In a dual-choice bioassay the bio-activity of sawfly haemolymph collected from larvae reared on different host plants (S. alba, B. nigra, and B. stricta) was tested against the ant Myrmica rubra L. (Hymenoptera: Formicidae). The haemolymph had a stronger deterrence effect when the corresponding sawfly larvae were reared on S. alba than when reared on B. nigra and B. stricta. Haemolymph of caterpillars of Pieris rapae L. (Lepidoptera: Pieridae) that had fed on S. alba was not deterrent to the ants. No sinalbin could be detected in their haemolymph. The glucosinolates sinalbin and sinigrin, offered in a concentration comparable to that in the sawfly haemolymph, were deterrent to the ants, but not as strongly as the corresponding haemolymph samples. This suggests, that glucosinolates are not the only compounds involved in the chemical defence of A. rosae. However, the presence of sequestered glucosinolates is already a sufficient defence towards predators such as ants, and their effectiveness is modulated by the host plant chemistry.