Boron carbonitride (BCN) films containing hybridized bonds involving elements B, C, and N over wide compositional ranges enable an abundant variety of new materials, electronic structures, properties, and applications, owing to their semiconducting properties with variable band gaps. However, it still remains challenging to achieve band gap-engineered BCN ternary with a controllable composition and well-established ordered structure. Herein, we report on the synthesis and characterization of hybridized BCN materials, consisting of self-ordered hexagonal BN (h-BN) crystalline nanodomains, with its aligned basal planes preferentially perpendicular to the substrate, depending on the growth conditions. The observation of the two sets of different band absorptions suggests that the h-BN nanodomains are distinguished enough to resume their individual band gap identity from the BCN films, which decreases as the carbon content increases in the BCN matrix, due to the doping and/or boundary effect. Our results reveal that the structural features and band gap of this form of hybrid BCN films are strongly correlated with the kinetic growth factors, making it a great system for further fundamental physical research and for potential in the development of band gap-engineered applications in optoelectronics.