The hydroisomerization of n-heptane is an alternative technological pathway to produce high-quality gasoline that can be improved through the development of suitable catalysts, kinetic modeling, and reactor optimization. In pursuit of this objective, a fundamental kinetic modeling of the hydroisomerization of n-heptane on a Pt/WO 3 /ZrO 2 catalyst was carried out following the single-event kinetics methodology and considering a predominant monofunctional mechanism in which elementary steps on both Brønsted and Lewis acid sites were modeled. The reactions were carried out in a temperature range between 433.15 and 513.15 K at 15 bar. The elementary steps on acid sites were the rate-determining steps, and the rates of reactions were written in terms of the alkyl carbenium ion concentrations, without molecular relumping. Instead, a relumping was made at the carbenium ion level to directly follow the selectivity and conversion of each group of carbenium ion isomers. In this way, the concentrations of reaction intermediates on both Brønsted and Lewis acid sites can be monitored through the reactor without the need to develop and solve complex equations. The desorption of carbenium ions on both sites was found to be by far the fastest step. The simulation of the process showed that it is possible to increase the research octane number by 54.5 units for a recovery fuel of 90.4 vol %. Modeling at the carbenium ion level allows a high predictive capability of the simulator and can subsequently lead to more reliable design and optimization of hydroisomerization reactors.