Plasma levels of lipoprotein(a) [Lp(a)], tissue plasminogen activator (tPA) and plasminogen activator inhibitor type 1 (PAI-1) were assessed in addition to anthropometry and levels of glucose, total cholesterol, triglycerides, high-density lipoprotein (HDL), low-density lipoprotein (LDL) and apo A1 and B in 73 patients (36 men and 37 women) with primary hyperlipidaemia (group NDHL) in Kuwait. Lp(a) levels (212 mg L-1, 8-600 mg L-1, median and range) were similar to those obtained in a matched group of 32 non-insulin-dependent diabetes mellitus (NIDDM) patients with hyperlipidaemia (218 mg L-1, 50-610 mg L-1) and slightly higher, although not significantly so (P = 0.06), than levels seen in 68 healthy normolipidaemic control subjects (182 mg L-1, 70-488 mg L-1). tPA levels (8.4 ng mL-1, 3.8-18.4 ng mL-1, median and range) in group NDHL were lower than in the diabetic group (11.4 ng mL-1, 5.2-14.2 ng mL-1) but higher than in the healthy control subjects (7.4 ng mL-1, 2.8-12.6 ng mL-1). PAI-1 levels in group NDHL (40.4 ng mL-1, 8.6-55 ng mL-1, median and range) were higher than in the control subjects (32.5 ng mL-1, 14.6-46.4 ng mL-1) but lower than in diabetic patients (43.8 ng mL-1, 15.6-55 ng mL-1). Hyperlipidaemia phenotype (hypercholesterolaemia or hypertriglyceridaemia) did not influence tPA and PAI-1 levels, but Lp(a) levels were significantly lower with hypertriglyceridaemia. Gender, cigarette smoking and racial origin (Kuwaitis, other Arabs or South Asians) did not affect Lp(a), tPA and PAI-1 levels, but tPA levels were higher in postmenopausal subjects. Low-density lipoprotein (LDL) levels (whether in total cholesterol or as apo B) correlated significantly (P < 0.05) with Lp(a) levels. tPA levels were correlated with age and the plasma levels of glucose and uric acid (P < 0.05); this correlation with glucose may explain the high levels associated with diabetes, whereas the age association might account not only for the differences observed between group NDHL and the younger control group but also for the higher levels in the postmenopausal women. PAI-1 levels correlated with tPA and triglyceride (TG) levels in the groups of subjects (normo- and hyperlipidaemic). In the normolipidaemic control group, the significant associations of tPA and PAI-1 were with body mass, expressed as the body mass index or the waist-hip ratio. These results suggest that different factors influence the plasma levels of the prothrombotic factors Lp(a), tPA and PAI-1 in healthy control subjects and in patients with hyperlipidaemia. In the latter, hyperlipidaemia phenotype, age, glycaemic status and uric acid levels are important determinants of the levels of these prothrombotic variables, whereas in the healthy, young control population, body mass was the single important association with tPA and PAI-1.