Congenital diaphragmatic hernia (CDH) is a congenital malformation that occurs with a frequency of 0.08 to 0.45 per 1,000 births. Children with CDH are born with the abdominal contents herniated through the diaphragm and exhibit an associated pulmonary hypoplasia which is frequently accompanied by severe morbidity and mortality. Although the etiology of CDH is largely unknown, considerable progress has been made in understanding its molecular mechanisms through the usage of genetic, teratogenic, and surgical models. The following review focuses on the teratogenic and surgical models of CDH and the possible molecular mechanisms of nitrofen (a diphenyl ether, formerly used as an herbicide) in both induction of CDH and pulmonary hypoplasia. In addition, the mechanisms of other compounds including several anti-inflammatory agents that have been linked to CDH will be discussed. Furthermore, this review will also explore the importance of vitamin A in lung and diaphragm development and the possible mechanisms of teratogen interference in vitamin A homeostasis. Continued exploration of these models will bring forth a clearer understanding of CDH and its molecular underpinnings, which will ultimately facilitate development of therapeutic strategies.