2022
DOI: 10.3390/ma15186371
|View full text |Cite
|
Sign up to set email alerts
|

Effect of Impact Velocity and Angle on Impact Wear Behavior of Zr-4 Alloy Cladding Tube

Abstract: In the pressurized water reactor nuclear power plant, 316L SS chips were captured by the support grid and continued to affect the Zr-4 cladding tube, causing the fuel rods to wear and perforate. In this work, a 60° acute angle cone of 316L SS was used to simulate the cyclic impact of debris on a Zr-4 alloy tube with different initial impact velocities and impact angles. Results showed that increasing the initial impact velocity will generate a wear debris accumulation layer with a wear-reducing effect, but als… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 29 publications
0
0
0
Order By: Relevance