Four primiparous and 4 multiparous midlactation dairy cows were stratified by pre-experimental milk yield (23.5 ± 2.3 kg/d), protein yield (0.75 ± 0.066 kg/d), parity, and days in lactation (121 ± 10 d) into 4 groups of 2 in a 2 × 2 factorial, Latin square design (n = 8) to assess the effect of forage source and a supplementary methionine hydroxy analog on nitrogen (N) balance where low crude protein (CP) diets (13.3%) are offered. Diets contained either predominantly grass silage [GS (G- and G+)] or corn silage [CS (C- and C+)] as the forage source and were offered with (G+ and C+) or without (G- and C-) the isopropyl ester of 2-hydroxy-4 methylthio butanoic acid (HMBi). The G- and G+ contained 46% GS and 10% CS in the dry matter (DM), whereas C- and C+ contained 12% GS and 52% CS in the DM. Supplementary HMBi was included at a rate of 0.2% of DM in G+ and C+ diets. Diets were isonitrogenous (9.8 ± 0.4% protein truly digested in the small intestine) and isoenergetic (0.96 ± 0.01 units of energy for lactation; kg/DM). Each of the 4 experimental periods lasted 24 d: 14 d for dietary adaptation, followed by 10 d of housing in individual metabolism stalls; N balance was conducted on the last 5 d of each experimental period. Intake of DM was higher for CS-based vs. GS-based diets (20.23 vs. 18.41 kg/d). No effect of dietary treatment was found on milk yield or yields of milk fat, protein, and lactose. Supplementing with HMBi tended to improve milk solids yield (1.69 vs. 1.59 kg/d), casein yield (0.59 vs. 0.55 kg/d), and concentrations of casein (2.89 vs. 2.73%) and protein (3.58 vs. 3.49%) in the milk. Dietary N intake was higher for CS-based vs. GS-based diets (0.460 vs. 0.422 kg/d). However, forage source or supplementary HMBi had no effect on N excretion in the feces, urine, or milk. Excretion of urinary urea was positively related to N intake. Concentrations of urea N in the plasma (2.34 vs. 1.72 mmol/L), milk (2.54 vs. 2.24 mmol/L), and urine (123.32 vs. 88.79 mmol/L), and total excretion of urinary urea N (40.23 vs. 35.09 g/d) were higher for animals offered CS-based vs. GS-based diets. Corn silage improved N intake through improved DM intake. However, neither forage source nor HMBi supplementation affects N output in the feces, urine, or milk.