In the present research, properties and performance of special effect printing inks were observed with the aim of obtaining a printed product with dual functional properties. Thermochromic liquid crystal-based printing ink (TLC) and UV-visible (daylight invisible) fluorescent inks (UVF), pure and as hybrid ink systems, were printed using a screen-printing technique on two types of uncoated paper substrates. Characterization of the paper substrates was performed, as well as detailed analysis of printed layers. Thickness, surface roughness, surface free energy, and adhesion parameters of printed layers were analysed. Spectral reflectance of pure UVF and TLC printing inks, as well as the spectral reflectance of the proposed hybrid ink systems were measured. The thermochromic effect of the TLC ink and hybrid systems was analysed. Microscopy was used to display the visual colour play effect and the effect of the fluorescence. Results of the measurements showed high compatibility of used materials in the proposed hybrid ink systems. Since the effect of luminescence and the colour play effect in the hybrid systems were preserved, it can be concluded that TLC/UVF hybrid ink systems can find their application in the development of functional packaging and in all other applications with special requirements for temperature monitoring and hidden information for different products.