Integration of alleles for bacterial canker resistance into new sweet cherry cultivars requires information on the sources of resistance in the germplasm. Five market-leading sweet cherry cultivars, 'Rainier', 'Sweetheart', 'Bing', 'Regina' and 'Chelan', advanced selections 'AA', 'BB', 'CC', 'DD', 'EE', 'GG', and 'PMR-1' used as breeding parents in the Washington State University's Sweet Cherry Breeding Program were evaluated. Comparative genotypic disease severity was obtained with three methods of inoculation (leaf wounding with carborundum, cut wounds in leaf mid-rib and shoot tip) on whole plants. Additionally, genotypic data on susceptibility of detached leaves versus fruit and an assessment of the movement of Pseudomonas syringae pv. syringae (Pss) population in inoculated shoots were obtained. Genotype susceptibility was significantly (P B 0.05) influenced by inoculation method, with shoot inoculation providing the best separation of resistance levels among genotypes. A low correlation (r = 0.26, P = 0.21) was observed between disease responses measured on detached leaf versus fruit, while a moderately high correlation (r = 0.50, P = 0.10) was found among bacterial populations in the tissues and in the degree of symptoms expressed. By all comparative methods, the advanced selections, as well as, 'PMR-1', were less susceptible than the market-leading cultivars. Also, movement of Pss from shoot tip inoculation points to the shoot base was not detected for advanced selections 'AA', 'BB', 'DD', and 'EE'. This study reveals that the advanced selections could be potential sources of resistance alleles to bacterial canker. This is the first evaluation of the advanced selections for bacterial canker disease.