Background
Epilepsy is a network disease and EEG could be used to evaluate dynamic inter-regional connectivity. The aim of the current study is to explore disruption of resting state EEG functional connectivity in focal epilepsy using coherence and phase lag degree. This cross-sectional study included 30 patients with focal epilepsy and 30 matched healthy controls. One to two minutes of EEG segmented into 2-s epochs during awake eye-closed state were analyzed using fast Fourier transform to yield four frequency bands: delta, theta, alpha and beta. Coherence and phase lag degree were computed between each pair of 19 EEG electrodes and were assessed at the intra-hemispheric (frontal–parietal and frontal–temporal) and inter-hemispheric (frontal, temporal and parietal) levels. The frequency of interictal epileptiform discharges (IEDs) was calculated from a 60-min EEG recording session.
Results
Compared to healthy controls, patients had lower theta coherence at left frontal–parietal (P = 0.017), lower delta coherence at inter-frontal (P = 0.045), higher theta phase lag at right frontal–parietal (P = 0.01) and lower delta phase lag at inter-temporal (P = 0.046) levels. Patients with left-sided epilepsy had lower theta coherence at left frontal–parietal (P = 0.026), higher theta phase lag at right frontal–parietal (P < 0.001), higher delta phase lag at right frontal–temporal (P = 0.036) and higher theta phase lag at inter-parietal (P = 0.028) levels. The frequency of IEDs correlated with phase lag of delta (P = 0.036, r = 0.406) and theta (P = 0.005, r = 0.513).
Conclusions
Patients with focal epilepsy had significant interictal functional connectivity disruption detected by coherence and phase lag degree of delta and theta waves and correlated with frequency of IEDs.