A B S T R A C TBackground: Linoleic acid (LA) is abundant in modern industrialized diets. Oxidized LA metabolites (OXLAMs) and reactive aldehydes, such as 4-hydroxy-2-nonenal (4-HNE), are present in heated vegetable oils and can be endogenously synthesized following consumption of dietary LA. OXLAMs have been implicated in cerebellar degeneration in chicks; 4-HNE is linked to neurodegenerative conditions in mammals. It unknown whether increasing dietary LA or OXLAMs alters the levels of oxidized fatty acids (oxylipins), precursor fatty acids, or 4-HNE in mammalian brain. Objectives: To determine the effects of increases in dietary OXLAMs and dietary LA, on levels of fatty acids, oxylipins, and 4-HNE in mouse brain tissues. Methods: Mice (n = 8 per group) were fed one of three controlled diets for 8 weeks: (1) a low LA diet, (2) a high LA diet, or (3) the low LA diet with added OXLAMs. Brain fatty acids, oxylipins, and 4-HNE were quantified in mouse cerebellum and cerebral cortex by gas chromatography-flame ionization detection, liquid chromatography-tandem mass spectrometry, and immunoblot, respectively. Results: Increasing dietary LA significantly increased omega-6 fatty acids, decreased omega-3 fatty acids, and increased OXLAMs in brain. Dietary OXLAMs had minimal effect on oxidized lipids but did decrease both omega-6 and omega-3 fatty acids. Neither dietary LA nor OXLAMs altered 4-HNE levels. Conclusion: Brain fatty acids are modulated by both dietary LA and OXLAMs, while brain OXLAMs are regulated by endogenous synthesis from LA, rather than incorporation of preformed OXLAMs.