Ti(β) alloys have become an important class in the biomedical field due to low Young’s modulus, excellent physical properties, and biocompatibility. However, their properties, like biocompatibility and, also, low wear resistance, can be still enhanced. To improve those properties, a composites approach can be applied. This research shows a new approach of the composite structure fabrication by powder metallurgy methods which for a stabile yttria-stabilized zirconia (YSZ) reinforcement phase could be obtained in the ultra-fine grain range beta-titanium matrix. In this work, the composites based on ultrafine-grain Ti-xMo (x = 23 wt%, 27 wt%, 35 wt%) alloys with addition 3 wt%, 5 wt% or 10 wt% YSZ, and 1 wt% Y2O3 were fabricated by the mechanical alloying and hot-pressing approach. Obtained composites were characterized in terms of their phase composition, microstructure, Young’s modulus, hardness, surface free energy (SFE), and corrosion resistance. The structure of composites consists of phases based on Ti–Mo, Ti(α), and YSZ. The oxide (YSZ) powder tends to agglomerate during processing, which is revealed in composites based on Ti23Mo and Ti27Mo. However, composites based on Ti35Mo are characterized by a high degree of dispersibility and this influences significantly the hardness value of the composites obtained. Only in the case of composites based on Ti35Mo, the decrease in Young’ Modulus is observed. All composites possess a hydrophilic surface property and good corrosion resistance.