Background
Patients with coronary microvascular dysfunction (CMD) often have diastolic dysfunction, representing an important therapeutic target. Ranolazine—a late-sodium current inhibitor—improves diastolic function in animal models, and subjects with obstructive CAD. We hypothesized that ranolazine would beneficially alter diastolic function in CMD.
Methods
To test this hypothesis, we performed retrospective tissue tracking analysis to evaluate systolic/diastolic strain, using cardiac magnetic resonance imaging cine images: a) acquired in a recently completed, randomized, double-blind, placebo-controlled, crossover trial of short-term ranolazine in subjects with CMD, and b) from 43 healthy reference controls.
Results
Diastolic strain rate was impaired in CMD vs. controls (circumferential diastolic strain rate: 99.9 ± 2.5%/s vs. 120.1 ± 4.0%/s, p=0.0003; radial diastolic strain rate: −199.5 ± 5.5%/s vs. −243.1 ± 9.6%/s, p=0.0008, case vs. control). Moreover, peak systolic circumferential (CS) and radial (RS) strain were also impaired in cases vs. controls (CS: −18.8 ± 0.3% vs. −20.7 ± 0.3%; RS: 35.8 ± 0.7% vs. 41.4 ± 0.9%; respectively; both p < 0.0001), despite similar and preserved ejection fraction. In contrast to our hypothesis however, we observed no significant changes in left ventricular diastolic function in CMD cases after two weeks of ranolazine vs. placebo.
Conclusions
The case-control comparison both confirms and extends our prior observations of diastolic dysfunction in CMD. That CMD cases were also found to have sub-clinical systolic dysfunction is a novel finding, highlighting the utility of this retrospective approach. In contrast to previous studies in obstructive CAD, ranolazine did not improve diastolic function in CMD.