To clarify the effect of concentration polarization of oxidative modification of low-density lipoproteins (ox-LDLs) on human smooth muscle cells (SMCs), the proliferation, ox-LDL uptake and apoptosis with SMCs cultured on permeable (the permeable group) or non-permeable membranes (the non-permeable group) were analysed by 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) assay, spectrofluorometry and flow cytometry using a parallel-plate flow chamber technique. The concentration polarization of ox-LDLs at the surface of the cultured cell monolayer was assessed by confocal laser microscopy. The results showed that concentration polarization of ox-LDLs could indeed occur at the cultured cell monolayer surface of the permeable group, leading to an enhanced wall concentration of ox-LDLs that was over 15 per cent higher than the bulk concentration of the perfusion solution at a pressure of 100 mmHg. When concentration of ox-LDLs in the perfusion solution was less than or equal to 100 mg ml -1 , SMCs' proliferation was induced, while cell apoptosis was induced when its concentration was above 150 mg ml -1 . The uptake of ox-LDLs by the cultured cells was significantly higher for the permeable group than for the non-permeable group. In addition, the ox-LDL-induced cell death and apoptosis were much more severe in the permeable group than that in the non-permeable group. Therefore, the experimental study suggests that concentration polarization of oxLDLs plays an adverse role in the vascular system owing to its toxicity to vascular cells, in turn enhance ox-LDL infiltration into the arterial wall and accelerate SMC apoptosis.