Insect species are subjected to disparate selection pressure due to various biotic and abiotic stresses. Management practices including the heavy use of chemical insecticides and introduction of insect-resistant plant cultivars have been found to accelerate these processes. Clearly, natural selection coupled with human intervention have led to insect adaptations that alter phenotypes and genetic structure over time, producing distinct individuals with specialized traits, within the populations, commonly defined as biotypes. Biotypes are commonly found to have better fitness in the new environment and, in the case of aphids, the most commonly studied system for biotypes, have the ability to successfully infest previously resistant host plants and new species of host plants. Although a large number of studies have explored biotypes, the concept for defining biotypes varies among scientists, as we lack a consistency in estimating biotype behavior and their variation within and between biotypes. The concept of biotypes is even more complicated in aphid species (Aphidoidea), as they undergo parthenogenetic reproduction, making it difficult to understand the source of variation or quantify gene flow. In this review, we aim to illuminate the concept of biotype and how it has been used in the study of aphids. We intend to further elaborate and document the existence of aphid biotypes using sugarcane aphid (Melanaphis sacchari) as a model to understand their differences, level of variation, evolution, and significance in pest management.