The radical intermediates and the nonradical products of peroxidized lipids are both effective in polymerizing RNase. The radicals formed by the fission of LAHPO may initiate a chain reaction resulting in the formation of protein radicals. These protein radicals react together to form polymeric products. This conclusion is in agreement with the observation of Roubal (1966), who suggested that the radical intermediates initiate the production of protein radicals which in turn polymerize as P-(P)re-P•• This mechanism is further strengthened by the effects of AsA and BHT on the polymer formation of RNase by LAHPO. The pronounced effect of AsA on the polymer formation of RNase by LAHPO suggests that AsA has increased the rate of the production of alkoxy or peroxy radicals. These radicals react with the proteins, affecting the formation of the protein radicals, which are also being degraded to SP. The antioxidative behavior of BHT further supports the radical mechanism of LAHPO.The reaction of SP is time dependent and SP did not produce polymers within a short incubation period but showed a relatively high fluorescence in contrast to LAHPO. LAHPO did not produce the fluorescence at 425 nm, which is due to a carbonylamine condensation reaction resulting in the formation of a conjugated chromophoric Schiff s base system (Ohio and Tappel, 1969). From the differences observed in the incorporation, inactivation, and relative damage to the amino acid residues with respect to LAHPO and SP, it was deduced that different amino acid residues are able to be attached by LAHPO or SP. Among the four enzymes under consideration, the structural conformations are different. This results in differences of the surface exposed groups susceptible to attachment by LAHPO or SP, and such exposed groups may be influenced by pH. For instance, at pH 8.0 amino groups of protein would be more unprotonated and better nucleophiles than at pH 5.0. The occurrence of a conformational change of protein structure can also be expected from a change in pH. Also, pH may affect the formation of reactive groups, for instance, the differences of radical formation by the decomposition of LAHPO at pH 5.0 and 8.0.The specific interactions are very complicated, and it can only be said that specific interactions of oxidized products of linoleic acid and proteins are caused by several factors, pH, specific structure of proteins, etc.
LITERATURE CITED