Acrylic bone cement is a poly(methyl methacrylate)-based material that ensures short-term stability of orthopedic implants after surgery. Its long-term performance can be affected by many factors (e.g., composition, cement mixing and delivery method, temperature, humidity). Furthermore, patient activities produce a spectrum of cyclic loads that generate microdamage within the acrylic bone cement mantle. Therefore, pre-clinical studies on fatigue damage of acrylic bone cements are essential for predicting the long-term stability of cemented implants. There are several methods for analyzing damage of acrylic bone cement. However, they present a number of limitations. The aim of this study was to validate the use of a high-resolution scanner to analyze the presence of microcracks in acrylic bone cement. The proposed method met predetermined criteria to overcome limitations of previous methods, ensuring approximate spatial resolution of 5 microns, reduction of image acquisition time, and reduction of artifacts due to operator and/or environment during image acquisition. Additionally, the described method was applied to three types of acrylic bone cement specimens that previously were subjected to a fatigue test. The presented method enables the accurate assessment of fatigue damage induced during cycling loading, including quantification of the number, length, type and position of cement cracks.