To accelerate the establishment of fundamental understanding of the additive manufacturing (AM) process and its influence on microstructural evolution and related properties, we develop a multiphysics and multiscale modeling framework that integrates: (1) a high-fidelity powder-scale three-dimensional simulation of transient heat transfer and melt flow dynamics, (2) cellular automaton simulation of solidification grain structure and texture, (3) phasefield modeling of precipitation and dissolution of second-phase precipitate during repeated thermal cycles, and (4) microstructure-based micro-and mesoscopic elastic response calculation. Using Ti-6Al-4V as a model system, we demonstrate the application of the integrated framework to simulate complex microstructure evolution during a single-track laser powder bed fusion process and the associated mechanical response. Our modeling framework successfully captures the solidification b grain structure as a function of laser power and scanning speed, a precipitation upon subsequent cooling with different rates, and elastic response of the resulting (a + b) two-phase microstructure. The key features of solidification and second-phase precipitate microstructures, and their dependence on processing parameters, agree well with existing experimental observations. The established modeling framework is generally applicable to other metallic materials fabricated by AM.