The relationship among the processing parameters, crystalline morphology, and macroscopic properties in injected molded bar becomes very complicated due to existence of temperature gradient and shear gradient along the sample thickness. To enhance the shear strength, gasassisted injection molding (GAIM) was utilized in producing the molded bars. The aim of our research was to explore the relationship between processing conditions and the spatial variation of the hierarchy structure as well as the mechanical properties of high-density polyethylene (HDPE) obtained via GAIM. In our previous work [Wang L, Yang B, Yang W et al (2011) Colloid Polym Sci 289:1661-1671], we found that the enhancement of the gas pressure can remarkably increase the degree of molecular orientation in the HDPE samples, which turns out to improve the mechanical performances of GAIM parts. In this work, the hierarchy structure, orientation behavior, and mechanical properties of molder bars under different gas delay time were investigated using a variety of characterization techniques including rheological experiments, scanning electron microscope, tensile testing, differential scanning calorimetry, and two-dimensional wide-angle X-ray scattering. Moreover, the temperature field during the short shot stage of GAIM process was simulated using an enthalpy transformation approach. Our results indicate that these properties were intimately related to each other, and with prolonged gas delay time, GAIM samples with higher degree of orientation and improved mechanical properties were obtained.