Biodegradable metallic alloys are currently being explored extensively for use in temporary implant applications, since the prolonged existence of implants within the body has been linked with health complications and metal toxicity. There are many metal alloy fabrication methods available in the industrial, aerospace, and biomedical fields; some of them have more advanced techniques and specialized equipment than others. Past studies have shown that the performances of materials is greatly affected by the concentration of alloying elements and the metal processing techniques used. However, the impact each fabrication method has on the chemical and mechanical properties of the material is not fully understood; this lack of knowledge limits the advancement of the field of biodegradable metals. This review provides a general introduction to biodegradable metals and their applications and then aims to give a broad overview of the influence of metal processing on the microstructure and properties of metal alloys. The possible implications of these fabrication methods for the biodegradable metals are discussed.