Spin crossover (SCO) active solid solutions with formula [FexZn1-x(Me1,3bpp)2](ClO4)2 (x = 0.10, 0.15, 0.22, 0.33, 0.41, 0.48, 0.56 and 0.64, Me1,3bpp is a bis-pyrazolylpyridine) and the complex [Zn(Me1,3bpp)2](ClO4)2 have been prepared and characterized by single crystal X-ray diffraction. The structural data and the powder diffraction patterns of all the compounds have been compared with the reported isostructural molecular crystal [Fe(Me1,3bpp)2](ClO4)2. Increasing amounts of Zn diminishes monotonically the cooperativity of the SCO of the parent Fe(II) complex (T1/2=183 K) and cause a decrease of T1/2 in line with the negative chemical pressure exerted by the Zn(II) complexes on the Fe(II) lattice. The gradual variation of the magnetic properties as the composition changes are paralleled by the evolution of the structural parameters at the molecular, intermolecular and crystal lattice scales. Thermal trapping of a portion of the Fe(II) centers of these alloys by quenching the crystals to 2 K unveils that, upon warming, the temperature of relaxation of the metastable states is almost constant for all compositions.