Pyrophyllite is extensively used in the high-pressure synthesis industry as a pressure-transmitting medium because of its outstanding pressure transmission, machinability, and insulation. Therefore, the atomic structure, electronic, and mechanical behavior of pyrophyllite [Al4Si8O20(OH)4] under high pressure should be discussed deeply and systematically. In the present paper, the lattice parameters, bond length, the electronic density of states, band structure, elastic constants, and mechanical parameters of pyrophyllite are investigated using density functional theory (DFT) from a microscopic perspective. The pressure dependence of atomic structure, electronic, and mechanical properties of pyrophyllite is analyzed for a wide range of pressure (from 0 GPa to 13.87 GPa). Under high pressure, the major bond lengths and layer thicknesses decrease slightly, and mechanical properties are improved with increasing pressure. The calculated electronic and band structures show only a slight change with increasing pressure, implying that the effect of pressure on the electronic property of pyrophyllite is weak, and pyrophyllite still has good stability under high pressure. The theoretical calculations presented here clarify the electronic and mechanical properties of natural pyrophyllite that are difficult to obtain experimentally because of their small particle size.