The flowability of food powders is a critical determinant of their processing efficiency, product quality, and overall operational success. This review delves into the intricacies of powder flowability, elucidating the factors that govern it and exploring various methods for its evaluation and enhancement. Particle size and distribution, particle shape, surface properties, moisture content, and storage conditions stand as the key determinants of powder flowability. Finer powders, with their increased interparticle cohesive forces, tend to exhibit poorer flowability. Particle shape also plays a role, with irregular or elongated particles flowing less readily than spherical ones. Surface properties influence interparticle friction, thereby impacting flow behavior. Moisture content significantly affects flowability, as increased moisture can lead to liquid bridge formation, hindering powder movement. Storage temperature, on the other hand, generally enhances powder flow due to reduced interparticle cohesive forces at higher temperatures. This highlights the need to understand the factors influencing food powder flowability and to employ appropriate evaluation strategies for optimizing food powder processing efficiency, product quality, and overall production success.