Buckwheat is a rich source of phenolic compounds that have shown to possess beneficial effect to reduce some diseases due to their antioxidant power. Phenolic compounds are present in the free and in the bound form to the cell wall that are concentrated mainly in the outer layer (hull and bran). Hull is removed before the milling of buckwheat to obtain flours. In order to evaluate the phenolic composition in dehulled buckwheat milling fractions, it was carried out a determination of free and bound phenolic compounds in dehulled whole buckwheat flour, light flour, bran flour, and middling flour by high-performance liquid chromatography-mass spectrometry (HPLC-MS). The most abundant free phenolic compounds were rutin and epiafzelchin-epicatechin-O-dimethylgallate, whereas the most abundant bound phenolic compounds were catechin and epicatechin in all buckwheat flours. Besides, the highest content of free phenolic compounds was obtained in bran flour (1249.49 mg/kg d.w.), whereas the greatest bound phenolic content was in middling (704.47 mg/kg d.w.) and bran flours (689.81 mg/kg d.w.). Thus, middling and bran flours are naturally enriched flours in phenolic compounds that could be used to develop functional foods.Phenolic compounds in buckwheat are present in the free and in the bound form to cell wall [11], however, the majority of phenolic compounds are present in the free form, which has a distribution and concentration that is different in each part of the grain: pericarp (hull, husk), coat, endosperm, embryo with axis, and two cotyledons [12]; phenolic compounds are concentrated in the outer layers (hull and bran) of buckwheat grain [2]. Nevertheless, during buckwheat seeds processing into flour, the hull (17-20% of buckwheat grain) is removed by stone dehuller. The resulting product, called groat (intact achene), is milled into bran flour (10-24%), which is a by-product that it is not commonly used in foods, and light flour (55-70%), which consists principally of endosperm and is used in human nutrition [13]. In addition, middling is a by-product from buckwheat milling that is not a flour that comprises different fractions and it includes 12% of the original grain, consisting of fractions of endosperm, bran, and germ [14]. Milling techniques used in the food industry employ mechanical force to break the grains into smaller fragments or fine particles. [15]. Previous studies reported the use of roller milling process in dehulled whole buckwheat to obtain a flour and the separation of this flour into various fractions from outer to inner parts [2,16]. These studies have shown that outer layers are richer in protein, lipid, dietary fiber, and ash content than the inner layers. Also, the antioxidant capacity in flour fractions in the outer layers is higher than that in the inner layers by the increase of phenolic compounds from bran [2,16]. In addition, it has reported that milling fractions that contain outer layers possess a higher concentration of phenolic compounds than whole grain and groat flour fractions [...