In this article, we synthesized and studied functionally graded multilayered Cu/B 4 C/graphite hybrid composites. Two classes of layer-graded composites were considered: pure Cu layer with two layers consisting of different particle sizes and uniform particle volume and a pure Cu layer with a single additional layer. The properties of the layer-graded composites were compared to those of single layer composites of two different particle sizes (1-20 mm and 60-90 mm). The composites were tested for compression strength, flexural strength, hardness, density, and wear and braking performance at a range of sliding speed conditions (5, 10, 30, and 35 m/s). The microstructure of the interfaces in the layergraded composites was characterized to determine the quality of bonding. We found that the layer-graded composites possess improved compression and flexural strength due to lower porosity and residual compressive stress in the composite layer aided by the work-hardening of the Cu layer. The presence of the ductile Cu layer improves the toughness and crack resistance properties of layer-graded composites by macrostructure toughening mechanism. The layer-graded composites possess improved wear resistance and braking performance at both low and high sliding speed conditions due to reduced third-body wear, oxidation, and softening of composites, aided by effective heat conduction through the Cu layer. Finally, the wear mechanisms operating at various speeds were discussed with the help of microscopic and X ray diffraction studies.