Experiments were carried out with various salts and their combinations to ascertain the impact of these salts on seedling traits of fodder species and to identify tolerant species. Length-based traits showed a repressed effect, whereas weight-based traits were increased under salt stress. Furthermore, accumulation of Na + , Ca 2+ , and Cl − ions and metals (Cu 2+ , Fe 2+ , and Al 3+ ) increased in various organs of seedlings due to various salt treatments. Contrastingly, K + , K + /Na + , and Ca 2+ /Cl − decreased, showing priority for specific salts. Seedling traits, such as shoot length sensitivity and shoot biomass, provide an effective mean of selection for tolerant or susceptible genotypes. Diverse types of tolerance mechanisms were present in cultivars to detoxify the effect of ions and metals. Cultivars that showed low susceptibility index, high shoot biomass, and high metal concentration were salt includers and could be utilized for bioremediation of the affected areas, whereas tolerant cultivars that showed low susceptibility index, metals concentration, and comparable shoot biomass to that of the control were salt excluders and could be utilized for fodder purposes.