Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in humans in Wuhan City at the end of December 2019. Since then, it has spread to all the countries. Therefore, global interest has been focused on discovering treatments and developing successful vaccines. This study sequenced the complete genome of the SARS-COV-2 Omicron Omicron (BA.1) and sub-variants (BA.1.1, BA.2), which were isolated from 40 individuals in Duhok, Iraq. Ninety-five different mutations were identified when the complete genome of the SARS-COV-2 virus discovered in Wuhan, China (accession number: NC 045512.2) was matched to the virus sequence using sequencing technology (Illumina, USA). Sequence analysis revealed 38 mutations in spike glycoprotein (S), 30 of which were found in ORF1a. Additionally, 11 mutations were found in ORF1b, and 7,3,2,1 mutations were found in Nucleocapsid (N), membrane protein (M), Open Reading Frames 6 (ORF6), Open Reading Frames 9 (ORF9), and Envelope (E) genes, respectively. Phylogenetic analysis and transmission further confirmed that the isolates found in Iraq had distinct infection origins and were closely related to those from other countries and states. According to the findings of this study, a new vaccine can be developed based on identifying new Omicron variant mutations and sub-variants such as BA.2, which were identified for the first time in Iraq.