The welding current (A), arc voltage (V) preheating (°C), travel speed (mm·min-1) and net heat input (Qnet) were evaluated, on the strength and morphology of the fracture in experimental HSLA Cr-Ni steel welded joints, with commercial (ERS70S-6) filler metal and robotic GTAW technique. The samples were characterized by uniaxial stress tests, stereoscopy and Digital Image Processing (DIP). The results showed that the resistance to fracture of the experimental steel was exceeded by 18.39% by applying Qnet 0.520 (kJ·mm-1) and the combination of: 200 A, 12.7 V, 25 °C and 180 mm min-1, which influenced the ductile fracture morphology and topology. While the low Qnet (0.200-0.208 kJ·mm-1) favors instantaneous deformation of the welded joints with fracture in the weld bead as the major defect.