Articles you may be interested inElectric-field-temperature phase diagram of the ferroelectric relaxor system (1−x)Bi1/2Na1/2TiO3−xBaTiO3 doped with manganese J. Appl. Phys. 115, 194104 (2014); 10.1063/1.4876746Long ranged structural modulation in the pre-morphotropic phase boundary cubic-like state of the lead-free piezoelectric Na1/2Bi1/2TiO3-BaTiO3 J. Appl. Phys. 114, 234102 (2013) On the phase identity and its thermal evolution of lead free (Bi 1/2 Na 1/2 )TiO 3 -6 mol% BaTiO 3 Temperature-dependent dielectric permittivity of 0.94(Bi 1/2 Na 1/2 )TiO 3 -0.06BaTiO 3 (BNT-6BT) lead-free piezoceramics was studied to disentangle the existing unclear issues over the crystallographic aspects and phase stability of the system. Application of existing phenomenological relaxor models enabled the relaxor contribution to the entire dielectric permittivity spectra to be deconvoluted. The deconvoluted data in comparison with the temperature-dependent dielectric permittivity of a classical perovskite relaxor, La-modified lead zirconate titanate, clearly suggest that BNT-6BT belongs to the same relaxor category, which was also confirmed by a comparative study on the temperature-dependent polarization hysteresis loops of both materials. Based on these results, we propose that the low-temperature dielectric anomaly does not involve any phase transition such as ferroelectric-toantiferroelectric. Supported by transmission electron microscopy and X-ray diffraction experiments at ambient temperature, we propose that the commonly observed two dielectric anomalies are attributed to thermal evolution of ferroelectric polar nanoregions of R3c and P4bm symmetry, which coexist nearly throughout the entire temperature range and reversibly transform into each other with temperature.