Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
PurposeThe purpose of this study was to validate the feasibility of the proposed microstructure-based model by comparing the simulation results with experimental data. The study also aimed to investigate the relationship between the orientation of graphite flakes and the failure behavior of the material under compressive loads as well as the effect of image size on the accuracy of stress–strain behavior predictions.Design/methodology/approachThis paper presents a microstructure-based model that utilizes the finite element method (FEM) combined with representative volume elements (RVE) to simulate the hardening and failure behavior of ferrite-pearlite matrix gray cast iron under uniaxial loading conditions. The material was first analyzed using optical microscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) to identify the different phases and their characteristics. High-resolution SEM images of the undeformed material microstructure were then converted into finite element meshes using OOF2 software. The Johnson–Cook (J–C) model, along with a damage model, was employed in Abaqus FEA software to estimate the elastic and elastoplastic behavior under assumed plane stress conditions.FindingsThe findings indicate that crack initiation and propagation in gray cast iron begin at the interface between graphite particles and the pearlitic matrix, with microcrack networks extending into the metal matrix, eventually coalescing to cause material failure. The ferritic phase within the material contributes some ductility, thereby delaying crack initiation.Originality/valueThis study introduces a novel approach by integrating microstructural analysis with FEM and RVE techniques to accurately model the hardening and failure behavior of gray cast iron under uniaxial loading. The incorporation of high-resolution SEM images into finite element meshes, combined with the J–C model and damage assessment in Abaqus, provides a comprehensive method for predicting material performance. This approach enhances the understanding of the microstructural influences on crack initiation and propagation, offering valuable insights for improving the design and durability of gray cast iron components.
PurposeThe purpose of this study was to validate the feasibility of the proposed microstructure-based model by comparing the simulation results with experimental data. The study also aimed to investigate the relationship between the orientation of graphite flakes and the failure behavior of the material under compressive loads as well as the effect of image size on the accuracy of stress–strain behavior predictions.Design/methodology/approachThis paper presents a microstructure-based model that utilizes the finite element method (FEM) combined with representative volume elements (RVE) to simulate the hardening and failure behavior of ferrite-pearlite matrix gray cast iron under uniaxial loading conditions. The material was first analyzed using optical microscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) to identify the different phases and their characteristics. High-resolution SEM images of the undeformed material microstructure were then converted into finite element meshes using OOF2 software. The Johnson–Cook (J–C) model, along with a damage model, was employed in Abaqus FEA software to estimate the elastic and elastoplastic behavior under assumed plane stress conditions.FindingsThe findings indicate that crack initiation and propagation in gray cast iron begin at the interface between graphite particles and the pearlitic matrix, with microcrack networks extending into the metal matrix, eventually coalescing to cause material failure. The ferritic phase within the material contributes some ductility, thereby delaying crack initiation.Originality/valueThis study introduces a novel approach by integrating microstructural analysis with FEM and RVE techniques to accurately model the hardening and failure behavior of gray cast iron under uniaxial loading. The incorporation of high-resolution SEM images into finite element meshes, combined with the J–C model and damage assessment in Abaqus, provides a comprehensive method for predicting material performance. This approach enhances the understanding of the microstructural influences on crack initiation and propagation, offering valuable insights for improving the design and durability of gray cast iron components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.