The reflection band of polymer stabilized cholesteric liquid crystals with negative dielectric anisotropy can be broadened by DC electric fields, which was ascribed to the pitch gradient caused by the motion of the structural chirality, that is, the polymer network. They systematically varied the mixture components, such as the photoâinitiator concentration, the monomer functionality, and the chiral dopant, to explore their influences on the reflection band broadening behavior. They learned how to control the polymer network morphology and ion density, which in turn determined the reflection bandwidth. By optimizing the mixture, they have greatly enhanced the broadening effect and achieved large bandwidth at low voltages. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 835â846