This study evaluated the wear characteristics and bonding to silver-palladium-coppergold (Ag-Pd-Cu-Au) alloy of an acrylic resin that was filled with pre-polymerized composite particles and initiated with tri-n-butylborane (TBB) derivative (Bondfill). Three methyl methacrylate (MMA)-based resins (Bondfill, Super-Bond, and Multi-Bond II) and a microfilled composite restorative material (Metafil C) were assessed. Disk specimens were cast from the alloy and were air-abraded with alumina. The disks were bonded with nine bonding systems selected from two priming and three luting agents. Shear bond s t re n g t h s w e re m e a s u re d b e fo re a n d a f t e r thermocycling. Bond strength varied from 2.2 MPa to 28.2 MPa. Three systems based on thione primers (Metaltite and V-Primer) and TBB-initiated resins (Bondfill and Super-Bond) had the highest bond strength after thermocycling (15.9-20.4 MPa). The toothbrush-dentifrice abrasion test showed that the Metafil C material was the most wear-resistant, followed by Bondfill and Super-Bond. In conclusion, Bondfill resin is an alternative to Super-Bond resin for luting metallic restorations and for restoring tooth defects. However, care is required in selecting appropriate clinical cases. (J Oral Sci 53, 109-116, 2011)