Cite this article as: Dobeli KL, Lewis SJ, Meikle SR, Thiele DL, Brennan PC. Noise-reducing algorithms do not necessarily provide superior dose optimisation for hepatic lesion detection with multidetector CT. Br J Radiol 2013;86:20120500. Noise-reducing algorithms do not necessarily provide superior dose optimisation for hepatic lesion detection with multidetector CT
Objective:To compare the doseoptimisation potential of a smoothing filtered backprojection (FBP) and a hybrid FBP/iterative algorithm to that of a standard FBP algorithm at three slice thicknesses for hepatic lesion detection with multidetector CT.Methods: A liver phantom containing a 9.5-mm opacity with a density of 10 HU below background was scanned at 125, 100, 75, 50 and 25 mAs. Data were reconstructed with standard FBP (B), smoothing FBP (A) and hybrid FBP/iterative (iDose 4 ) algorithms at 5-, 3-and 1-mm collimation. 10 observers marked opacities using a four-point confidence scale. Jackknife alternative freeresponse receiver operating characteristic figure of merit (FOM), sensitivity and noise were calculated.Results: Compared with the 125-mAs/5-mm setting for each algorithm, significant reductions in FOM (p,0.05) and sensitivity (p,0.05) were found for all three algorithms for all exposures at 1-mm thickness and for all slice thicknesses at 25 mAs, with the exception of the 25-mAs/5-mm setting for the B algorithm. Sensitivity was also significantly reduced for all exposures at 3-mm thickness for the A algorithm (p,0.05). Noise for the A and iDose 4 algorithms was approximately 13% and 21% lower, respectively, than for the B algorithm.Conclusion: Superior performance for hepatic lesion detection was not shown with either a smoothing FBP algorithm or a hybrid FBP/iterative algorithm compared with a standard FBP technique, even though noise reduction with thinner slices was demonstrated with the alternative approaches.