The emerging concept of hybrid nanofluids has grabbed the attention of researchers and scientists due to improved thermal performance because of their remarkable thermal conductivities. These fluids have enormous applications in engineering and industrial sectors. Therefore, the present research study examines thermal and mass transportation in hybrid nanofluid past an inclined linearly stretching sheet using the Maxwell fluid model. In the current problem, the hybrid nanofluid is engineered by suspending a mixture of aluminum oxide Al2O3 and copper Cu nanoparticles in ethylene glycol. The fluid flow is generated due to the linear stretching of the sheet and the sheet is kept inclined at the angle ζ=π/6 embedded in porous medium. The current proposed model also includes the Lorentz force, solar radiation, heat generation, linear chemical reactions, and permeability of the plate effects. Here, in the current simulation, the cylindrical shape of the nanoparticles is considered, as this shape has proven to be excellent for the thermal performance of the nanomaterials. The governing equations transformed into ordinary differential equations are solved using MATLAB bvp4c solver. The velocity field declines with increasing magnetic field parameter, Maxwell fluid parameter, volume fractions of nanoparticles, and porosity parameter but increases with growing suction parameter. The temperature drops with increasing magnetic field force and suction parameter values but increases with increasing radiation parameter and volume fraction values. The concentration profile increases with increasing magnetic field parameters, porosity parameters, and volume fractions but reduces with increasing chemical reaction parameters and suction parameters. It has been noted that the purpose of the inclusion of thermal radiation is to augment the temperature that is serving the purpose in the current work. The addition of Lorentz force slows down the speed of the fluid and raises the boundary layer thickness, which is visible in the current study. It has been concluded that, when heat generation parameters increase, the temperature field increases correspondingly for both nanofluids and hybrid nanofluids. The increase in the volume fraction of the nanoparticles is used to enhance the thermal performance of the hybrid nanofluid, which is evident in the current results. The current results are validated by comparing them with published ones.