The determination of strength properties i.e., compressive strength (CS) is essential to estimate the load at which the concrete members may crack especially in aggressive environment. The paper reports an experimental investigation on deterioration of used engine oil (UEO) soaked concrete with respect to its strength properties. Also, it is found that this deteriorating effect is lessened with partial replacement of silica fumes (SF). The CS analysis was done with a water-concrete ratio of 0.49 with nine percentage replacements of SF (0, 5, 10, 15, 20, 25, 30, 35, 40 and 45) with water curing and UEO soaking. The soaking in two different liquids was essential in order to throw light on the detrimental effects of UEO on the CS of concrete. The results of the experiments showed that 20% replacement of SF in concrete was optimum to attain maximum CS. A mathematical model based on Abrams' law has been developed to evaluate the strength characteristics of concrete subjected to UEO soaking. The developed model facilitates the prediction of CS based on curing time in water and soaking time in UEO and also the quantity of SF used. The accuracy of the developed model is evaluated and good agreements with the ground truth values are found.