Portulaca oleracea is as a medicinal plant known for its neuroprotective, hepatoprotective, antidiabetic, antioxidant, anticancer, antimicrobial, antiulcerogenic, and anti-inflammatory activities. However, the specific active compounds responsible for the individual pharmacological effects of P. oleracea extract (95% EtOH) remain unknown. Here, we hypothesized that alkaloids, the most abundant constituents in P. oleracea extract, are responsible for its anti-inflammatory activity. We investigated the phytochemical substituents (compounds 1–22) using nuclear magnetic resonance (NMR) and electrospray ionization mass spectrometry (ESI-MS) and screened their effects on NO production in lipopolysaccharide (LPS)-induced macrophages. Compound 20, 1-carbomethoxy-β-carboline, as an alkaloid structure, ameliorated nitric oxide (NO) production, inducible nitric oxide synthase (iNOS), and proinflammatory cytokines associated with the mitogen-activated protein kinase (MAPK) pathways, p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). Subsequently, we observed that compound 20 suppressed nuclear translocation of nuclear factor κB (NF-κB) using immunocytochemistry. Moreover, we recently reported that compound 8, trans-N-feruloyl-3’, 7’-dimethoxytyramine, was originally purified from P. oleracea extracts. Our results suggest that 1-carbomethoxy-β-carboline, the most effective anti-inflammatory agent among alkaloids in the 95% EtOH extract of P. oleracea, was suppressing the MAPK pathway and nuclear translocation of NF-κB. Therefore, P. oleracea extracts and specifically 1-carbomethoxy-β-carboline may be novel therapeutic candidates for the treatment of inflammatory diseases associated with the activation of MAPKs and NF-κB.