We synthesized tetrafunctional allyl ether monomer (4-AE) and investigated the effects of the different molar ratios of trimethylolpropane tris-(3-mercaptopropionate) (3-SH) to 4-AE on the photopolymerization behavior, morphology, and electro-optical properties of thiol-ene-based PDLC films. Photo-DSC and DSC analyses revealed that the PDLC sample containing 45 wt% 3-SH and 45 wt% 4-AE gave the highest exotherm, the fastest photocure rate, and the highest T g due to the matched stoichiometry. Morphological observations and electro-optical measurements showed that the PDLC sample with the matched molar ratio gave the smallest LC droplet size, the highest threshold, driving voltages, and lowest saturation transmittance because the orientation of LC molecules got difficulty in small droplets. The stoichiometric ratios of 3-SH to 4-AE played an important role in controlling the photocure rate, phase separation rate, microstructures of LC droplets, and electro-optical properties of thiol-ene-based PDLC systems.