The initial and final softening (melting) temperatures of redesigned iron ore agglomerates with basicities from 1.2 to 3.0, obtained under laboratory conditions, were investigated. The chemical and phase compositions of the laboratory agglomerates, their microstructures and local chemical compositions, the temperatures at the beginning and end of softening (melting), and the temperature interval of softening were studied. Dependencies of the influence of the basicity of iron ore agglomerates on their softening temperature interval, depending on the proportion of phase components, were obtained. It is shown that as the basicity and proportion of silicoferrite SFCA phases increase, the temperatures at the beginning and end of the softening increase and reach a maximum of 1200 and 1312 °С, respectively (at the basicity of the agglomerate of 1.8), after which the temperatures decrease. Simultaneously, the softening interval increased from 73 to 112 °C.