As a new non-destructive testing technology, near-infrared spectroscopy has broad application prospects in agriculture, food, and other fields. In this paper, an intelligent near-infrared diffuse reflectance spectroscopy scheme (INIS) for the non-destructive testing of the sugar contents in vegetables and fruits was proposed. The cherry tomato were taken as the research object. The applicable objects and features of the three main methods of near-infrared detection were compared. According to the advantages and disadvantages of the three near infrared (NIR) detection methods, the experiment was carried out. This experiment involved the near-infrared diffuse reflection detection method, and the back propagation (BP) network model was established to research the sugar content of the cherry tomatoes. We used smoothing and a principal component analysis (PCA) to extract the final spectrum from the experimental spectrum. Taking the preprocessed spectral data as the input of the network and the measured sugar content of the cherry tomatoes as the output, the 80-12-1 network model structure was established. The cross-validation coefficient of determination was 0.8328 and the mean absolute deviation was 0.5711. The results indicate that the BP neural network can quickly and effectively detect the sugar content in cherry tomatoes. This intelligent near-infrared diffuse reflectance spectroscopy (INIS) scheme can be extended and optimized for almost all sugar-containing fruits and vegetables in the future.