In this paper, we analyzed diurnal and annual seasonal variations of solar wind parameters such as interplanetary magnetic field (IMF), proton density (N), solar wind speed (V) and solar wind dynamic pressure (Pdym), during the solar cycles 23 and 24. Our study shows that strong geomagnetic disturbances are observed at the equinoxes during both solar cycles. The highest proton densities are observed at solstices during both solar cycles. The greatest solar wind speeds are observed at the equinoxes of solar cycle 23 and at the solstices of solar cycle 24. The highest solar wind dynamic pressures are observed at the solstices of both solar cycles. We also observed an asymmetrical evolution of the seasonal diurnal values of the solar wind parameters during the two cycles, except for the proton density. Our investigations also highlight the fact that the seasonal diurnal values of the solar wind parameters are significant at solar cycle 23 compared to solar cycle 24 characterized by a global weak in solar plasma conditions since the deep minimum that followed the solar cycle 23 leading to an absence of a persistent polar coronal hole. The drop observed in polar field and solar winds parameters during solar cycle 24 is reproduced on seasons (solstices and equinoxes). The solar cycle 23 and 24 appear to be two magnetically opposite solar cycles regardless the time scales.