Granule growth is an important process for iron ore sintering process. Variation of granule size has a great influence on the quality of sinter and productivity of the process. In this study, a model of granule growth was proposed based on two dimensional homogeneous sphere packing theory. The sintering process was simulated by an unsteady two-dimensional mathematical model which incorporates most of the significant physical phenomena and chemical reactions. Numerical simulation was carried out by FLUENT software and C language programming via developing custom code. Sinter pot tests were performed and experimental data reasonably agreed with the simulation. Results showed that granules diameter changed from 3 mm to 31.9 mm, which increased nearly ten times, while sintering time and yield can be estimated. Simulations were conducted under different initial iron ore size to investigate its effect on sintering. Results showed that larger agglomeration were formed and thickness of molten zone was decreased under larger initial iron ore size, which shortened sintering time and increased productivity.