According to the requirement of fire life cycle assessment (LCA), chitosan ethoxyl urea phosphate (CEUP), an organic–inorganic intumescent flame retardant (IFR) containing phosphorus, nitrogen, and silicon, was synthesized by the reaction of chitosan, phosphorus pentoxide, and urea. FTIR, 1H NMR, SEM, and XRD were employed to characterize the compounds. As a result, CEUP was successfully prepared with higher thermal stability, favorable to enhance fire resistance. Combined with OMMT, the organic/inorganic IFR was applied as EP flame‐retardant agents. The combustion behavior of EP composite was investigated by LOI, UL‐94, CCT, SEM, TGA, and TG‐IR. It was observed that using 15% CEUP and 3% OMMT (EP3), LOI value reached 34.8% and passed the UL‐94 V‐0 rating, while THR and TSP of EP composite reduced 65 and 72% compared with pure EP. The char residue of EP composite was up to 22.4%. The thermal decomposition mechanism was traced from 100 to 600°C by TG‐IR. It was suggestive that CEUP decomposition commenced at 100°C to create phosphoric acid and sublimation of urea occurred at 300°C. EP3 exhibited a strong thermal stability, namely even at 600°C, the volatile substances were detectable. Dense and expanded carbon layer was confirmed in SEM images.