All-solid-state flexible dye-sensitized solar cells will not only expand the application scenarios of solar cells but also significantly extend the lifetime of solar cells. However, improving their bending-resistant ability is still a great challenge. In this study, a bending-resistant flexible all-solid dye-sensitized solar cell was designed and prepared. Firstly, for the preparation of TiO2 photoanode, the traditional nano-sized film has been replaced by dual-porous film with both nano and submicron pores, which can not only benefit the filling of the electrolyte but also supply the space for stress release. Secondly, for the filling of the Poly(vinylidene fluoride)/Poly(ethylene oxide)-based electrolyte, the solvent is removed by a vacuum method, and the electrolyte fibers forming in the submicron pores also show the potential for stress release. Lastly, combined with the advantages of the dual-porous TiO2 film and the fast evaporation of the polymer electrolyte, the conversion efficiency of the solar cells remains constant after the 20,000 bending times. The study supplies a demonstration for the development of all-solid-state flexible dye-sensitized solar cells.