⎯ Airfoil is a fundamental geometry in designing various aerodynamic objects. Passive flow control installation is essential in determining the airfoil's aerodynamic performance. The influence of variations in slat size as a passive flow control instrument is analyzed using the CFD method with a Reynold number of = 6 Re 10 . In this study, NACA 6641 was seleceted as slat. The slat has two variations, i.e., 10% and 16% of the chord length. Based on the computational results, variations in slat size have a substantial influence on the aerodynamic efficiency of the airfoil. Variations in slat size additional Cl ability to reach 20.6043% and 13.1917%, respectively. In addition, a 16%c slat can delay a stall until it reaches AoA ≥ 19°. Meanwhile, a 10%c slat can delay a stall until it reaches AoA ≥ 17°. Variations in slat size also affect the drag force. Slat measuring 16%c can addition Cd up to 50.9252%. Meanwhile, 10% c slat additional Cd up to 21.8389%. Based on the resulting lift-to-drag ratio curve, a 10%c slat has the lowest lift-to-drag ratio compared to a 16%c slat. However, a 10%c slat has the highest level of stability when compared to a 16%c slat installation and without a slat installation.