In this study, TiVCr and TiVCrZrY films were deposited on Si substrates by magnetron sputtering with the application of radio-frequency substrate bias of different powers from 0 to 15 W. The crystal structures, microstructure, and mechanical, electrical, and optical properties under the effect of bias were characterized. Both the TiVCr and TiVCrZrY films constructed simple solid solutions from all alloyed elements. The TiVCr films possessed a body-centered cubic crystal structure with a pyramid-like surface, while the TiVCrZrY films had a hexagonal close-packed crystal structure with a domelike surface. The microstructure and properties of the films varied with bias power. As the bias power increased, the microstructure of the films obviously changed from a porous to a dense columnar feature, and the density of the voids existing between the columns decreased. Accordingly, the physical properties of the films were improved. The hardness of the TiVCr and TiVCrZrY films was enhanced to about 11 and 14 GPa, and the electrical resistivity was lowered to 80 and 100 mu cm, respectively