Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The development of new encapsulating coatings for flexible solar cells (SCs) can help address the complex problem of the short lifespan of these devices, as well as optimize the technological process of their production. In this study, new laminate-type protective composite coatings were prepared using a silicon oxynitride thin-film matrix obtained by curing the pre-ceramic polymer perhydropolysilazane (PHPS) through two low-temperature methods: (i) thermal annealing at 180 °C and (ii) exposure to UV radiation at wavelengths of 185 and 254 nm. Single-walled carbon nanotubes (SWCNTs) were used as fillers via dry transfer, facilitating their horizontal orientation within the matrix. The optical, adhesive, and structural properties of the matrix films and SiOxNy/SWCNT composite coatings, along with their long-term stability, were studied using Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, HR-SEM, spectral ellipsometry, and a progressive-load scratch test. In this work, the optical constants of PHPS-derived films were systematically studied for the first time. An antireflection effect was observed in the composites revealing their two-component nature associated with (i) the refractive index of the SiOxNy matrix film and (ii) the embedding of a SWCNT filler into the SiOxNy matrix. The curing method of PHPS was shown to significantly affect the resulting properties of the films. In addition to being used as protective multifunctional coatings for SCs, both SiOxNy/SWCNT composites and SiOxNy matrix films also function as broadband optical antireflective coatings. Furthermore, due to the very low friction coefficients observed in the mechanical tests, they show potential as scratch resistant coatings for mechanical applications.
The development of new encapsulating coatings for flexible solar cells (SCs) can help address the complex problem of the short lifespan of these devices, as well as optimize the technological process of their production. In this study, new laminate-type protective composite coatings were prepared using a silicon oxynitride thin-film matrix obtained by curing the pre-ceramic polymer perhydropolysilazane (PHPS) through two low-temperature methods: (i) thermal annealing at 180 °C and (ii) exposure to UV radiation at wavelengths of 185 and 254 nm. Single-walled carbon nanotubes (SWCNTs) were used as fillers via dry transfer, facilitating their horizontal orientation within the matrix. The optical, adhesive, and structural properties of the matrix films and SiOxNy/SWCNT composite coatings, along with their long-term stability, were studied using Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, HR-SEM, spectral ellipsometry, and a progressive-load scratch test. In this work, the optical constants of PHPS-derived films were systematically studied for the first time. An antireflection effect was observed in the composites revealing their two-component nature associated with (i) the refractive index of the SiOxNy matrix film and (ii) the embedding of a SWCNT filler into the SiOxNy matrix. The curing method of PHPS was shown to significantly affect the resulting properties of the films. In addition to being used as protective multifunctional coatings for SCs, both SiOxNy/SWCNT composites and SiOxNy matrix films also function as broadband optical antireflective coatings. Furthermore, due to the very low friction coefficients observed in the mechanical tests, they show potential as scratch resistant coatings for mechanical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.