Abstract:In this work, a nitrogen-containing bidentate ligand named 5,5 -(9-octyl-9H-carbazole-2,7-diyl)bis(1,10-phenanthroline) (OCBP) was synthesized as a nitrogen precursor for making an oxygen reduction catalyst. The 1,10-phenanthroline unit provides a coordination site for copper ions, and the resulting Cu-N x unit may be responsible for the catalytic activities of the catalyst. Carbon black was selected as a support to improve the electroconductibility of the resulting catalyst. The metallo-supramolecule (Cu-SOCBP) was dispersed on the surface of Vulcan XC-72 carbon and was used as a catalyst (designated as Cu-SOCBP/C) for the oxygen reduction reaction (ORR). The microscope structure and surface components of the catalyst were acquired via scanning electron microscopy and X-ray photoelectron spectroscopy, as well as X-ray powder diffraction. The electrochemical property and ORR mechanism of Cu-SOCBP/C were analyzed using a variety of electroanalytical methods including cyclic voltammetry, electrochemical impedance spectroscopy, and linear sweep voltammetry. These results show that Cu-SOCBP/C was successfully synthesized and that ORR was achieved mainly via a four-electron transfer process to water. Thus, Cu-SOCBP/C was an effective catalyst and might have potential application as a cathodic catalyst in microbial fuel cells, which operate in an aqueous medium.