Cognition and brain homeostasis depends on cerebral blood flow to secure adequate oxygen and nutrient distribution to the brain tissue. Altered cerebral blood flow has previously been reported in individuals diagnosed with autism spectrum condition in comparison to non-autistics. This phenomenon might suggest cerebral blood flow as a potential biomarker for autism spectrum condition. Major technological advancement enables the non-invasive and quantitative measurement of cerebral blood flow via arterial spin labeling magnetic resonance imaging. However, most neuroimaging studies in autistic individuals exploit the indirect blood oxygen level dependent functional magnetic resonance imaging signal instead. Therefore, this review examines the use of arterial spin labeling to further investigate the neurobiology of the autism spectrum condition. Followed by a comparison of results from molecular imaging and arterial spin labeling studies and a discussion concerning the future direction and potential of arterial spin labeling in this context. We found that arterial spin labeling study results are consistent with those of molecular imaging, especially after considering the effect of age and sex. Arterial spin labeling has numerous application possibilities besides the quantification of cerebral blood flow, including assessment of functional connectivity and arterial transit time. Therefore, we encourage researchers to explore and consider the application of arterial spin labeling for future scientific studies in the quest to better understand the neurobiology of autism spectrum condition. Lay abstract Brain function and health depend on cerebral blood flow to secure the necessary delivery of oxygen and nutrients to the brain tissue. However, cerebral blood flow appears to be altered in autistic compared to non-autistic individuals, potentially suggesting this difference to be a cause and potential identification point of autism. Recent technological development enables precise and non-invasive measurement of cerebral blood flow via the magnetic resonance imaging method referred to as arterial spin labeling. However, most neuroimaging studies still prefer using the physiologically indirect measure derived from functional magnetic resonance imaging. Therefore, this review examines the use of arterial spin labeling to further investigate the neurobiology of autism. Furthermore, the review includes a comparison of results from molecular imaging and arterial spin labeling followed by a discussion concerning the future direction and potential of arterial spin labeling. We found that arterial spin labeling study results are consistent with those of molecular imaging, especially after considering the effect of age and sex. In addition, arterial spin labeling has numerous application possibilities besides the quantification of cerebral blood flow. Therefore, we encourage researchers to explore and consider the application of arterial spin labeling for future scientific studies in the quest to better understand the neurobiology of autism.