Based on traditional titanium-based composites and the design concept of biomimetic laminated structures, the continuous SiC ceramic fiber, ductile metal Ti foil, and intermetallic Ti2AlNb foil were selected as structural components, which were alternately stacked in the sequence of Ti2AlNb-Ti-SiCf-Ti-Ti2AlNb to prepare the continuous SiC ceramic fiber-reinforced titanium-based laminated composite. The methods adopted were vacuum hot-pressing and ceramic fiber braiding. In the prepared state, the composite’s structural components were metallurgically bonded ideally, and the continuous SiC ceramic fiber was equidistantly distributed in the ductile metal Ti matrix. This composite’s phase is mainly composed of α-Ti, β-Ti, SiC, TiC, O, and B2 phases. In addition, along the ceramic SiC fiber lengthwise, the tensile test was performed on this composite at room temperature and a high temperature of 600°C, with the ultimate tensile strength being 948.76 MPa and 526.62 MPa, respectively, and, in this process, the fiber was debonded and pulled out. Meanwhile, the composite’s bending strength was measured to be 1506.21 MPa in a three-point bending test, and, under this bending load, the mode of crack propagation and failure mechanism were analyzed.